Copied to
clipboard

G = C424C4.C2order 128 = 27

2nd non-split extension by C424C4 of C2 acting faithfully

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C424C4.2C2, (C2×C42).4C22, C2.4(C425C4), C22.49(C8○D4), (C22×C8).22C22, C4.45(C422C2), C2.C42.10C4, C23.310(C22×C4), (C22×C4).1624C23, C22.7C42.6C2, C22.81(C42⋊C2), C2.9(C42.7C22), (C2×C4).932(C4○D4), (C22×C4).115(C2×C4), SmallGroup(128,572)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C424C4.C2
C1C2C4C2×C4C22×C4C2×C42C424C4 — C424C4.C2
C1C23 — C424C4.C2
C1C22×C4 — C424C4.C2
C1C2C2C22×C4 — C424C4.C2

Generators and relations for C424C4.C2
 G = < a,b,c,d | a4=b4=c4=1, d2=bc2, ab=ba, cac-1=ab2, dad-1=a-1b2c2, bc=cb, bd=db, dcd-1=a2b2c >

Subgroups: 164 in 98 conjugacy classes, 52 normal (6 characteristic)
C1, C2, C2, C4, C4, C22, C8, C2×C4, C2×C4, C23, C42, C2×C8, C22×C4, C22×C4, C2.C42, C2×C42, C22×C8, C22.7C42, C424C4, C424C4.C2
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, C4○D4, C42⋊C2, C422C2, C8○D4, C425C4, C42.7C22, C424C4.C2

Smallest permutation representation of C424C4.C2
Regular action on 128 points
Generators in S128
(1 71 99 14)(2 76 100 128)(3 65 101 16)(4 78 102 122)(5 67 103 10)(6 80 104 124)(7 69 97 12)(8 74 98 126)(9 42 66 22)(11 44 68 24)(13 46 70 18)(15 48 72 20)(17 125 45 73)(19 127 47 75)(21 121 41 77)(23 123 43 79)(25 61 53 33)(26 94 54 114)(27 63 55 35)(28 96 56 116)(29 57 49 37)(30 90 50 118)(31 59 51 39)(32 92 52 120)(34 106 62 86)(36 108 64 88)(38 110 58 82)(40 112 60 84)(81 117 109 89)(83 119 111 91)(85 113 105 93)(87 115 107 95)
(1 17 5 21)(2 18 6 22)(3 19 7 23)(4 20 8 24)(9 76 13 80)(10 77 14 73)(11 78 15 74)(12 79 16 75)(25 83 29 87)(26 84 30 88)(27 85 31 81)(28 86 32 82)(33 91 37 95)(34 92 38 96)(35 93 39 89)(36 94 40 90)(41 99 45 103)(42 100 46 104)(43 101 47 97)(44 102 48 98)(49 107 53 111)(50 108 54 112)(51 109 55 105)(52 110 56 106)(57 115 61 119)(58 116 62 120)(59 117 63 113)(60 118 64 114)(65 127 69 123)(66 128 70 124)(67 121 71 125)(68 122 72 126)
(1 31 23 87)(2 56 24 112)(3 25 17 81)(4 50 18 106)(5 27 19 83)(6 52 20 108)(7 29 21 85)(8 54 22 110)(9 62 74 118)(10 39 75 95)(11 64 76 120)(12 33 77 89)(13 58 78 114)(14 35 79 91)(15 60 80 116)(16 37 73 93)(26 42 82 98)(28 44 84 100)(30 46 86 102)(32 48 88 104)(34 126 90 66)(36 128 92 68)(38 122 94 70)(40 124 96 72)(41 105 97 49)(43 107 99 51)(45 109 101 53)(47 111 103 55)(57 125 113 65)(59 127 115 67)(61 121 117 69)(63 123 119 71)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)

G:=sub<Sym(128)| (1,71,99,14)(2,76,100,128)(3,65,101,16)(4,78,102,122)(5,67,103,10)(6,80,104,124)(7,69,97,12)(8,74,98,126)(9,42,66,22)(11,44,68,24)(13,46,70,18)(15,48,72,20)(17,125,45,73)(19,127,47,75)(21,121,41,77)(23,123,43,79)(25,61,53,33)(26,94,54,114)(27,63,55,35)(28,96,56,116)(29,57,49,37)(30,90,50,118)(31,59,51,39)(32,92,52,120)(34,106,62,86)(36,108,64,88)(38,110,58,82)(40,112,60,84)(81,117,109,89)(83,119,111,91)(85,113,105,93)(87,115,107,95), (1,17,5,21)(2,18,6,22)(3,19,7,23)(4,20,8,24)(9,76,13,80)(10,77,14,73)(11,78,15,74)(12,79,16,75)(25,83,29,87)(26,84,30,88)(27,85,31,81)(28,86,32,82)(33,91,37,95)(34,92,38,96)(35,93,39,89)(36,94,40,90)(41,99,45,103)(42,100,46,104)(43,101,47,97)(44,102,48,98)(49,107,53,111)(50,108,54,112)(51,109,55,105)(52,110,56,106)(57,115,61,119)(58,116,62,120)(59,117,63,113)(60,118,64,114)(65,127,69,123)(66,128,70,124)(67,121,71,125)(68,122,72,126), (1,31,23,87)(2,56,24,112)(3,25,17,81)(4,50,18,106)(5,27,19,83)(6,52,20,108)(7,29,21,85)(8,54,22,110)(9,62,74,118)(10,39,75,95)(11,64,76,120)(12,33,77,89)(13,58,78,114)(14,35,79,91)(15,60,80,116)(16,37,73,93)(26,42,82,98)(28,44,84,100)(30,46,86,102)(32,48,88,104)(34,126,90,66)(36,128,92,68)(38,122,94,70)(40,124,96,72)(41,105,97,49)(43,107,99,51)(45,109,101,53)(47,111,103,55)(57,125,113,65)(59,127,115,67)(61,121,117,69)(63,123,119,71), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)>;

G:=Group( (1,71,99,14)(2,76,100,128)(3,65,101,16)(4,78,102,122)(5,67,103,10)(6,80,104,124)(7,69,97,12)(8,74,98,126)(9,42,66,22)(11,44,68,24)(13,46,70,18)(15,48,72,20)(17,125,45,73)(19,127,47,75)(21,121,41,77)(23,123,43,79)(25,61,53,33)(26,94,54,114)(27,63,55,35)(28,96,56,116)(29,57,49,37)(30,90,50,118)(31,59,51,39)(32,92,52,120)(34,106,62,86)(36,108,64,88)(38,110,58,82)(40,112,60,84)(81,117,109,89)(83,119,111,91)(85,113,105,93)(87,115,107,95), (1,17,5,21)(2,18,6,22)(3,19,7,23)(4,20,8,24)(9,76,13,80)(10,77,14,73)(11,78,15,74)(12,79,16,75)(25,83,29,87)(26,84,30,88)(27,85,31,81)(28,86,32,82)(33,91,37,95)(34,92,38,96)(35,93,39,89)(36,94,40,90)(41,99,45,103)(42,100,46,104)(43,101,47,97)(44,102,48,98)(49,107,53,111)(50,108,54,112)(51,109,55,105)(52,110,56,106)(57,115,61,119)(58,116,62,120)(59,117,63,113)(60,118,64,114)(65,127,69,123)(66,128,70,124)(67,121,71,125)(68,122,72,126), (1,31,23,87)(2,56,24,112)(3,25,17,81)(4,50,18,106)(5,27,19,83)(6,52,20,108)(7,29,21,85)(8,54,22,110)(9,62,74,118)(10,39,75,95)(11,64,76,120)(12,33,77,89)(13,58,78,114)(14,35,79,91)(15,60,80,116)(16,37,73,93)(26,42,82,98)(28,44,84,100)(30,46,86,102)(32,48,88,104)(34,126,90,66)(36,128,92,68)(38,122,94,70)(40,124,96,72)(41,105,97,49)(43,107,99,51)(45,109,101,53)(47,111,103,55)(57,125,113,65)(59,127,115,67)(61,121,117,69)(63,123,119,71), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128) );

G=PermutationGroup([[(1,71,99,14),(2,76,100,128),(3,65,101,16),(4,78,102,122),(5,67,103,10),(6,80,104,124),(7,69,97,12),(8,74,98,126),(9,42,66,22),(11,44,68,24),(13,46,70,18),(15,48,72,20),(17,125,45,73),(19,127,47,75),(21,121,41,77),(23,123,43,79),(25,61,53,33),(26,94,54,114),(27,63,55,35),(28,96,56,116),(29,57,49,37),(30,90,50,118),(31,59,51,39),(32,92,52,120),(34,106,62,86),(36,108,64,88),(38,110,58,82),(40,112,60,84),(81,117,109,89),(83,119,111,91),(85,113,105,93),(87,115,107,95)], [(1,17,5,21),(2,18,6,22),(3,19,7,23),(4,20,8,24),(9,76,13,80),(10,77,14,73),(11,78,15,74),(12,79,16,75),(25,83,29,87),(26,84,30,88),(27,85,31,81),(28,86,32,82),(33,91,37,95),(34,92,38,96),(35,93,39,89),(36,94,40,90),(41,99,45,103),(42,100,46,104),(43,101,47,97),(44,102,48,98),(49,107,53,111),(50,108,54,112),(51,109,55,105),(52,110,56,106),(57,115,61,119),(58,116,62,120),(59,117,63,113),(60,118,64,114),(65,127,69,123),(66,128,70,124),(67,121,71,125),(68,122,72,126)], [(1,31,23,87),(2,56,24,112),(3,25,17,81),(4,50,18,106),(5,27,19,83),(6,52,20,108),(7,29,21,85),(8,54,22,110),(9,62,74,118),(10,39,75,95),(11,64,76,120),(12,33,77,89),(13,58,78,114),(14,35,79,91),(15,60,80,116),(16,37,73,93),(26,42,82,98),(28,44,84,100),(30,46,86,102),(32,48,88,104),(34,126,90,66),(36,128,92,68),(38,122,94,70),(40,124,96,72),(41,105,97,49),(43,107,99,51),(45,109,101,53),(47,111,103,55),(57,125,113,65),(59,127,115,67),(61,121,117,69),(63,123,119,71)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)]])

44 conjugacy classes

class 1 2A···2G4A···4H4I···4T8A···8P
order12···24···44···48···8
size11···11···14···44···4

44 irreducible representations

dim111122
type+++
imageC1C2C2C4C4○D4C8○D4
kernelC424C4.C2C22.7C42C424C4C2.C42C2×C4C22
# reps16181216

Matrix representation of C424C4.C2 in GL6(𝔽17)

120000
0160000
002900
00111500
000040
000004
,
400000
040000
0013000
0001300
000010
000001
,
1600000
110000
00161500
001100
00001616
000021
,
910000
880000
00131600
0012400
000005
0000100

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,2,16,0,0,0,0,0,0,2,11,0,0,0,0,9,15,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[16,1,0,0,0,0,0,1,0,0,0,0,0,0,16,1,0,0,0,0,15,1,0,0,0,0,0,0,16,2,0,0,0,0,16,1],[9,8,0,0,0,0,1,8,0,0,0,0,0,0,13,12,0,0,0,0,16,4,0,0,0,0,0,0,0,10,0,0,0,0,5,0] >;

C424C4.C2 in GAP, Magma, Sage, TeX

C_4^2\rtimes_4C_4.C_2
% in TeX

G:=Group("C4^2:4C4.C2");
// GroupNames label

G:=SmallGroup(128,572);
// by ID

G=gap.SmallGroup(128,572);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,176,422,723,58,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=b*c^2,a*b=b*a,c*a*c^-1=a*b^2,d*a*d^-1=a^-1*b^2*c^2,b*c=c*b,b*d=d*b,d*c*d^-1=a^2*b^2*c>;
// generators/relations

׿
×
𝔽